3 Subject content

All candidates should be taught the Core subject content. Candidates who are only taught the Core subject content can achieve a maximum of grade C. Candidates aiming for grades A* to C should be taught the Extended subject content. The Extended subject content includes both the Core and the Supplement.

Scientific subjects are, by their nature, experimental. Learners should pursue a fully integrated course which allows them to develop their practical skills by carrying out practical work and investigations within all of the topics listed.

1 General physics

1.1 Length and time

Core

- Use and describe the use of rules and measuring cylinders to find a length or a volume
- Use and describe the use of clocks and devices, both analogue and digital, for measuring an interval of time
- Obtain an average value for a small distance and for a short interval of time by measuring multiples (including the period of a pendulum)

1.2 Motion

Core

- Define speed and calculate average speed from <u>total distance</u> total time
- Plot and interpret a speed-time graph or a distance-time graph
- Recognise from the shape of a speed-time graph when a body is
 - at rest
 - moving with constant speed
 - moving with changing speed
- Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration
- Demonstrate understanding that acceleration and deceleration are related to changing speed including qualitative analysis of the gradient of a speed-time graph
- State that the acceleration of free fall for a body near to the Earth is constant

Supplement

Supplement

• Distinguish between speed and velocity

Understand that a micrometer screw gauge is

used to measure very small distances

- Define and calculate acceleration using
 <u>change of velocity</u>
 time taken
- Calculate speed from the gradient of a distance-time graph
- Calculate acceleration from the gradient of a speed-time graph
- Recognise linear motion for which the acceleration is constant
- Recognise motion for which the acceleration is not constant
- Understand deceleration as a negative acceleration
- Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity)

1.3 Mass and weight

Core

- Show familiarity with the idea of the mass of a body
- State that weight is a gravitational force
- Distinguish between mass and weight
- Recall and use the equation W = mg
- Demonstrate understanding that weights (and hence masses) may be compared using a balance

1.4 Density

Core

- Recall and use the equation $\rho = \frac{m}{V}$
- Describe an experiment to determine the density of a liquid and of a regularly shaped solid and make the necessary calculation
- Describe the determination of the density of an irregularly shaped solid by the method of displacement
- Predict whether an object will float based on density data

1.5 Forces

1.5.1 Effects of forces

Core

- Recognise that a force may produce a change in size and shape of a body
- Plot and interpret extension-load graphs and describe the associated experimental procedure
- Describe the ways in which a force may change the motion of a body
- Find the resultant of two or more forces acting along the same line
- Recognise that if there is no resultant force on a body it either remains at rest or continues at constant speed in a straight line
- Understand friction as the force between two surfaces which impedes motion and results in heating
- Recognise air resistance as a form of friction

- Demonstrate an understanding that mass is a property that 'resists' change in motion
- Describe, and use the concept of, weight as the effect of a gravitational field on a mass

- Supplement
- State Hooke's Law and recall and use the expression *F* = *kx*, where *k* is the spring constant
- Recognise the significance of the 'limit of proportionality' for an extension-load graph
- Recall and use the relationship between force, mass and acceleration (including the direction), *F* = ma
- Describe qualitatively motion in a circular path due to a perpendicular force (*F* = mv²/r is not required)

1.5.2 Turning effect

Core

- Describe the moment of a force as a measure of its turning effect and give everyday examples
- Understand that increasing force or distance from the pivot increases the moment of a force
- Calculate moment using the product force × perpendicular distance from the pivot
- Apply the principle of moments to the balancing of a beam about a pivot

1.5.3 Conditions for equilibrium

Core

• Recognise that, when there is no resultant force and no resultant turning effect, a system is in equilibrium

1.5.4 Centre of mass

Core

- Perform and describe an experiment to determine the position of the centre of mass of a plane lamina
- Describe qualitatively the effect of the position of the centre of mass on the stability of simple objects

1.5.5 Scalars and vectors

Supplement

• Apply the principle of moments to different situations

Supplement

• Perform and describe an experiment (involving vertical forces) to show that there is no net moment on a body in equilibrium

- Understand that vectors have a magnitude and direction
- Demonstrate an understanding of the difference between scalars and vectors and give common examples
- Determine graphically the resultant of two vectors

1.6 Momentum

Supplement

- Understand the concepts of momentum and impulse
- Recall and use the equation momentum = mass × velocity, p = mv
- Recall and use the equation for impulse *Ft* = *mv* – *mu*
- Apply the principle of the conservation of momentum to solve simple problems in one dimension

1.7 Energy, work and power

1.7.1 Energy

Core

- Identify changes in kinetic, gravitational potential, chemical, elastic (strain), nuclear and internal energy that have occurred as a result of an event or process
- Recognise that energy is transferred during events and processes, including examples of transfer by forces (mechanical working), by electrical currents (electrical working), by heating and by waves
- Apply the principle of conservation of energy to simple examples

Supplement

• Recall and use the expressions kinetic energy = $\frac{1}{2}mv^2$ and change in gravitational potential energy = $mg\Delta h$

- Apply the principle of conservation of energy to examples involving multiple stages
- Explain that in any event or process the energy tends to become more spread out among the objects and surroundings (dissipated)

1.7.2 Energy resources

Core

- Describe how electricity or other useful forms of energy may be obtained from:
 - chemical energy stored in fuel
 - water, including the energy stored in waves, in tides, and in water behind hydroelectric dams
 - geothermal resources
 - nuclear fission
 - heat and light from the Sun (solar cells and panels)
 - wind
- Give advantages and disadvantages of • each method in terms of renewability, cost, reliability, scale and environmental impact
- Show a qualitative understanding of efficiency •

Supplement

- Understand that the Sun is the source of energy for all our energy resources except geothermal, nuclear and tidal
- Show an understanding that energy is • released by nuclear fusion in the Sun

Recall and use the equations:

efficiency =
$$\frac{\text{useful energy output}}{\text{energy input}} \times 100\%$$

efficiency = $\frac{\text{useful power output}}{\text{power output}} \times 100\%$

efficiency =
$$\frac{accupate of output}{power input} \times 100\%$$

1.7.3 Work

Core

- Demonstrate understanding that • work done = energy transferred
- Relate (without calculation) work done to the • magnitude of a force and the distance moved in the direction of the force

1.7.4 Power

Core

• Relate (without calculation) power to work done and time taken, using appropriate examples

Supplement

Recall and use $W = Fd = \Delta E$

Supplement

Recall and use the equation $P = \Delta E / t$ in simple systems

1.8 Pressure

Core

- Recall and use the equation p = F/A
- Relate pressure to force and area, using appropriate examples
- Describe the simple mercury barometer and its use in measuring atmospheric pressure
- Relate (without calculation) the pressure beneath a liquid surface to depth and to density, using appropriate examples
- Use and describe the use of a manometer

Recall and use the equation $p = h\rho g$

2 **Thermal physics**

2.1 Simple kinetic molecular model of matter

2.1.1 States of matter

Core

• State the distinguishing properties of solids, liquids and gases

2.1.2 Molecular model

Core

- Describe qualitatively the molecular structure • of solids, liquids and gases in terms of the arrangement, separation and motion of the molecules
- Interpret the temperature of a gas in terms of the motion of its molecules
- Describe qualitatively the pressure of a gas in terms of the motion of its molecules
- Show an understanding of the random motion of particles in a suspension as evidence for the kinetic molecular model of matter
- Describe this motion (sometimes known as Brownian motion) in terms of random molecular bombardment

2.1.3 Evaporation

Core

- Describe evaporation in terms of the escape of more-energetic molecules from the surface of a liquid
- Relate evaporation to the consequent cooling of the liquid

Supplement

Supplement

- Relate the properties of solids, liquids and gases to the forces and distances between molecules and to the motion of the molecules
- Explain pressure in terms of the change of momentum of the particles striking the walls creating a force
- Show an appreciation that massive particles may be moved by light, fast-moving molecules

- Demonstrate an understanding of how temperature, surface area and draught over a surface influence evaporation
- Explain the cooling of a body in contact with ٠ an evaporating liquid

2.1.4 Pressure changes

Core

- Describe qualitatively, in terms of molecules, the effect on the pressure of a gas of:
 - a change of temperature at constant volume
 - a change of volume at constant temperature

2.2 Thermal properties and temperature

2.2.1 Thermal expansion of solids, liquids and gases

Core

- Describe qualitatively the thermal expansion of solids, liquids, and gases at constant pressure
- Identify and explain some of the everyday applications and consequences of thermal expansion

2.2.2 Measurement of temperature

Core

- Appreciate how a physical property that varies with temperature may be used for the measurement of temperature, and state examples of such properties
- Recognise the need for and identify fixed points
- Describe and explain the structure and action of liquid-in-glass thermometers

2.2.3 Thermal capacity (heat capacity)

Core

- Relate a rise in the temperature of a body to an increase in its internal energy
- Show an understanding of what is meant by the thermal capacity of a body

Supplement

Recall and use the equation pV = constant for a fixed mass of gas at constant temperature

Supplement

 Explain, in terms of the motion and arrangement of molecules, the relative order of the magnitude of the expansion of solids, liquids and gases

Supplement

- Demonstrate understanding of sensitivity, range and linearity
- Describe the structure of a thermocouple and show understanding of its use as a thermometer for measuring high temperatures and those that vary rapidly
- Describe and explain how the structure of a liquid-in-glass thermometer relates to its sensitivity, range and linearity

- Give a simple molecular account of an increase in internal energy
- Recall and use the equation thermal capacity = *mc*
- Define specific heat capacity
- Describe an experiment to measure the specific heat capacity of a substance
- Recall and use the equation change in energy = $mc\Delta T$

2.2.4 Melting and boiling

Core

- Describe melting and boiling in terms of energy input without a change in temperature
- State the meaning of melting point and boiling point
- Describe condensation and solidification in terms of molecules

Supplement

- Distinguish between boiling and evaporation
- Use the terms latent heat of vaporisation and latent heat of fusion and give a molecular interpretation of latent heat
- Define specific latent heat
- Describe an experiment to measure specific latent heats for steam and for ice
- Recall and use the equation energy = ml

2.3 Thermal processes

2.3.1 Conduction

Core

• Describe experiments to demonstrate the properties of good and bad thermal conductors

Supplement

• Give a simple molecular account of conduction in solids including lattice vibration and transfer by electrons

2.3.2 Convection

Core

- Recognise convection as an important method of thermal transfer in fluids
- Relate convection in fluids to density changes and describe experiments to illustrate convection

2.3.3 Radiation

Core

- Identify infra-red radiation as part of the electromagnetic spectrum
- Recognise that thermal energy transfer by radiation does not require a medium
- Describe the effect of surface colour (black or white) and texture (dull or shiny) on the emission, absorption and reflection of radiation

- Describe experiments to show the properties of good and bad emitters and good and bad absorbers of infra-red radiation
- Show understanding that the amount of radiation emitted also depends on the surface temperature and surface area of a body

2.3.4 Consequences of energy transfer

Core

• Identify and explain some of the everyday applications and consequences of conduction, convection and radiation

3 Properties of waves, including light and sound

3.1 General wave properties

Core

- Demonstrate understanding that waves transfer energy without transferring matter
- Describe what is meant by wave motion as illustrated by vibration in ropes and springs and by experiments using water waves
- Use the term wavefront
- Give the meaning of speed, frequency, wavelength and amplitude
- Distinguish between transverse and longitudinal waves and give suitable examples
- Describe how waves can undergo:
 - reflection at a plane surface
 - refraction due to a change of speed
 - diffraction through a narrow gap
- Describe the use of water waves to demonstrate reflection, refraction and diffraction

Supplement

- Recall and use the equation $v = f \lambda$
- Describe how wavelength and gap size affects diffraction through a gap
- Describe how wavelength affects diffraction at an edge

3.2 Light

3.2.1 Reflection of light

Core

- Describe the formation of an optical image by a plane mirror, and give its characteristics
- Recall and use the law angle of incidence = angle of reflection

- Recall that the image in a plane mirror is virtual
- Perform simple constructions, measurements and calculations for reflection by plane mirrors

3.2.2 Refraction of light

Core

- Describe an experimental demonstration of the refraction of light
- Use the terminology for the angle of incidence *i* and angle of refraction *r* and describe the passage of light through parallel-sided transparent material
- Give the meaning of critical angle
- Describe internal and total internal reflection

3.2.3 Thin converging lens

Core

- Describe the action of a thin converging lens on a beam of light
- Use the terms principal focus and focal length
- Draw ray diagrams for the formation of a real image by a single lens
- Describe the nature of an image using the terms enlarged/same size/diminished and upright/inverted

3.2.4 Dispersion of light

Core

• Give a qualitative account of the dispersion of light as shown by the action on light of a glass prism including the seven colours of the spectrum in their correct order

Supplement

- Recall and use the definition of refractive index *n* in terms of speed
- Recall and use the equation $\frac{\sin i}{\sin r} = n$
- Recall and use $n = \frac{1}{\sin c}$
- Describe and explain the action of optical fibres particularly, in medicine and communications technology

Supplement

- Draw and use ray diagrams for the formation of a virtual image by a single lens
- Use and describe the use of a single lens as a magnifying glass
- Show understanding of the terms real image and virtual image

Supplement

• Recall that light of a single frequency is described as monochromatic

3.3 Electromagnetic spectrum

Core

- Describe the main features of the electromagnetic spectrum in order of wavelength
- State that all electromagnetic waves travel with the same high speed in a vacuum
- Describe typical properties and uses of radiations in all the different regions of the electromagnetic spectrum including:
 - radio and television communications (radio waves)
 - satellite television and telephones (microwaves)
 - electrical appliances, remote controllers for televisions and intruder alarms (infrared)
 - medicine and security (X-rays)
- Demonstrate an awareness of safety issues regarding the use of microwaves and X-rays

3.4 Sound

Core

- Describe the production of sound by vibrating sources
- Describe the longitudinal nature of sound waves
- State that the approximate range of audible frequencies for a healthy human ear is 20 Hz to 20000 Hz
- Show an understanding of the term ultrasound
- Show an understanding that a medium is needed to transmit sound waves
- Describe an experiment to determine the speed of sound in air
- Relate the loudness and pitch of sound waves to amplitude and frequency
- Describe how the reflection of sound may produce an echo

Supplement

 State that the speed of electromagnetic waves in a vacuum is 3.0 × 10⁸ m/s and is approximately the same in air

Supplement

• Describe compression and rarefaction

• State typical values of the speed of sound in gases, liquids and solids

4 Electricity and magnetism

4.1 Simple phenomena of magnetism

Core

- Describe the forces between magnets, and between magnets and magnetic materials
- Give an account of induced magnetism
- Distinguish between magnetic and nonmagnetic materials
- Describe methods of magnetisation, to include stroking with a magnet, use of direct current (d.c.) in a coil and hammering in a magnetic field
- Draw the pattern of magnetic field lines around a bar magnet
- Describe an experiment to identify the pattern of magnetic field lines, including the direction
- Distinguish between the magnetic properties of soft iron and steel
- Distinguish between the design and use of permanent magnets and electromagnets

4.2 Electrical quantities

4.2.1 Electric charge

Core

- State that there are positive and negative charges
- State that unlike charges attract and that like charges repel
- Describe simple experiments to show the production and detection of electrostatic charges
- State that charging a body involves the addition or removal of electrons

• Distinguish between electrical conductors and insulators and give typical examples

Supplement

- Explain that magnetic forces are due to interactions between magnetic fields
- Describe methods of demagnetisation, to include hammering, heating and use of alternating current (a.c.) in a coil

- State that charge is measured in coulombs
- State that the direction of an electric field at a point is the direction of the force on a positive charge at that point
- Describe an electric field as a region in which an electric charge experiences a force
- Describe simple field patterns, including the field around a point charge, the field around a charged conducting sphere and the field between two parallel plates (not including end effects)
- Give an account of charging by induction
- Recall and use a simple electron model to distinguish between conductors and insulators

4.2.2 Current

Core

- State that current is related to the flow of charge
- Use and describe the use of an ammeter, both analogue and digital
- State that current in metals is due to a flow of electrons

4.2.3 Electromotive force

Core

• State that the electromotive force (e.m.f.) of an electrical source of energy is measured in volts

4.2.4 Potential difference

Core

- State that the potential difference (p.d.) across a circuit component is measured in volts
- Use and describe the use of a voltmeter, both analogue and digital

4.2.5 Resistance

Core

- State that resistance = p.d./current and understand qualitatively how changes in p.d. or resistance affect current
- Recall and use the equation R = V/I
- Describe an experiment to determine resistance using a voltmeter and an ammeter
- Relate (without calculation) the resistance of a wire to its length and to its diameter

Supplement

- Show understanding that a current is a rate of flow of charge and recall and use the equation I = Q/t
- Distinguish between the direction of flow of electrons and conventional current

Supplement

• Show understanding that e.m.f. is defined in terms of energy supplied by a source in driving charge round a complete circuit

Supplement

• Recall that 1 V is equivalent to 1 J/C

Supplement

- Sketch and explain the current-voltage characteristic of an ohmic resistor and a filament lamp
- Recall and use quantitatively the proportionality between resistance and length, and the inverse proportionality between resistance and cross-sectional area of a wire

4.2.6 Electrical working

Core

• Understand that electric circuits transfer energy from the battery or power source to the circuit components then into the surroundings

Supplement

• Recall and use the equations *P* = *IV* and *E* = *IVt*

4.3 Electric circuits

4.3.1 Circuit diagrams

Core

 Draw and interpret circuit diagrams containing sources, switches, resistors (fixed and variable), heaters, thermistors, light-dependent resistors, lamps, ammeters, voltmeters, galvanometers, magnetising coils, transformers, bells, fuses and relays

4.3.2 Series and parallel circuits

Core

- Understand that the current at every point in a series circuit is the same
- Give the combined resistance of two or more resistors in series
- State that, for a parallel circuit, the current from the source is larger than the current in each branch
- State that the combined resistance of two resistors in parallel is less than that of either resistor by itself
- State the advantages of connecting lamps in parallel in a lighting circuit

4.3.3 Action and use of circuit components Core

- Describe the action of a variable potential divider (potentiometer)
- Describe the action of thermistors and lightdependent resistors and show understanding of their use as input transducers
- Describe the action of a relay and show understanding of its use in switching circuits

Supplement

 Draw and interpret circuit diagrams containing diodes

Supplement

- Calculate the combined e.m.f. of several sources in series
- Recall and use the fact that the sum of the p.d.s across the components in a series circuit is equal to the total p.d. across the supply
- Recall and use the fact that the current from the source is the sum of the currents in the separate branches of a parallel circuit
- Calculate the effective resistance of two resistors in parallel

- Describe the action of a diode and show understanding of its use as a rectifier
- Recognise and show understanding of circuits operating as light-sensitive switches and temperature-operated alarms (to include the use of a relay)

4.4 Digital electronics

Supplement

- Explain and use the terms analogue and digital in terms of continuous variation and high/low states
- Describe the action of NOT, AND, OR, NAND and NOR gates
- Recall and use the symbols for logic gates
- Design and understand simple digital circuits combining several logic gates
- Use truth tables to describe the action of individual gates and simple combinations of gates

4.5 Dangers of electricity

Core

- State the hazards of:
 - damaged insulation
 - overheating of cables
 - damp conditions
- State that a fuse protects a circuit
- Explain the use of fuses and circuit breakers and choose appropriate fuse ratings and circuit-breaker settings
- Explain the benefits of earthing metal cases

4.6 Electromagnetic effects

4.6.1 Electromagnetic induction

Core

- Show understanding that a conductor moving across a magnetic field or a changing magnetic field linking with a conductor can induce an e.m.f. in the conductor
- Describe an experiment to demonstrate electromagnetic induction
- State the factors affecting the magnitude of an induced e.m.f.

- Show understanding that the direction of an induced e.m.f. opposes the change causing it
- State and use the relative directions of force, field and induced current

4.6.2 a.c. generator

Core

• Distinguish between d.c. and a.c.

Supplement

- Describe and explain a rotating-coil generator and the use of slip rings
- Sketch a graph of voltage output against time for a simple a.c. generator
- Relate the position of the generator coil to the peaks and zeros of the voltage output

4.6.3 Transformer

Core

- Describe the construction of a basic transformer with a soft-iron core, as used for voltage transformations
- Recall and use the equation $(V_{\rm p}/V_{\rm s}) = (N_{\rm p}/N_{\rm s})$
- Understand the terms step-up and step-down
- Describe the use of the transformer in highvoltage transmission of electricity
- Give the advantages of high-voltage transmission

4.6.4 The magnetic effect of a current

Core

- Describe the pattern of the magnetic field (including direction) due to currents in straight wires and in solenoids
- Describe applications of the magnetic effect of current, including the action of a relay

4.6.5 Force on a current-carrying conductor Core

- Describe an experiment to show that a force acts on a current-carrying conductor in a magnetic field, including the effect of reversing:
 - the current
 - the direction of the field

Supplement

- Describe the principle of operation of a transformer
- Recall and use the equation $I_p V_p = I_s V_s$ (for 100% efficiency)
- Explain why power losses in cables are lower when the voltage is high

Supplement

- State the qualitative variation of the strength of the magnetic field over salient parts of the pattern
- State that the direction of a magnetic field line at a point is the direction of the force on the N pole of a magnet at that point
- Describe the effect on the magnetic field of changing the magnitude and direction of the current

- State and use the relative directions of force, field and current
- Describe an experiment to show the corresponding force on beams of charged particles

4.6.6 d.c. motor

Core

- State that a current-carrying coil in a magnetic field experiences a turning effect and that the effect is increased by:
 - increasing the number of turns on the coil
 - increasing the current
 - increasing the strength of the magnetic field

5 Atomic physics

5.1 The nuclear atom

5.1.1 Atomic model

Core

• Describe the structure of an atom in terms of a positive nucleus and negative electrons

Supplement

• Relate this turning effect to the action of an electric motor including the action of a split-ring commutator

Supplement

• Describe how the scattering of α-particles by thin metal foils provides evidence for the nuclear atom

5.1.2 Nucleus

Core

- Describe the composition of the nucleus in terms of protons and neutrons
- State the charges of protons and neutrons
- Use the term proton number Z
- Use the term nucleon number A
- Use the term nuclide and use the nuclide notation $\frac{A}{Z}X$
- Use and explain the term isotope

5.2 Radioactivity

5.2.1 Detection of radioactivity

Core

- Demonstrate understanding of background radiation
- Describe the detection of α-particles, β-particles and γ-rays (β⁺ are not included: β-particles will be taken to refer to β⁻)

- State the meaning of nuclear fission and nuclear fusion
- Balance equations involving nuclide notation

5.2.2 Characteristics of the three kinds of emission

Core

- Discuss the random nature of radioactive emission
- Identify α, β and γ-emissions by recalling
 their nature
 - their relative ionising effects
 - their relative penetrating abilities $(\beta^+ \text{ are not included}, \beta\text{-particles will be taken to refer to }\beta^-)$

5.2.3 Radioative decay

Core

- State the meaning of radioactive decay
- State that during α- or β-decay the nucleus changes to that of a different element

5.2.4 Half-life

Core

• Use the term half-life in simple calculations, which might involve information in tables or decay curves

5.2.5 Safety precautions

Core

- Recall the effects of ionising radiations on living things
- Describe how radioactive materials are handled, used and stored in a safe way

Supplement

- Describe their deflection in electric fields and in magnetic fields
- Interpret their relative ionising effects
- Give and explain examples of practical applications of α, β and γ-emissions

Supplement

• Use equations involving nuclide notation to represent changes in the composition of the nucleus when particles are emitted

Supplement

• Calculate half-life from data or decay curves from which background radiation has not been subtracted